metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(Benzoato- $\kappa^2 O, O'$)(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane- $\kappa^4 N, N', N'', N'''$)nickel(II) perchlorate benzoic acid solvate

Guang-Chuan Ou,* Min Zhang, Xian-You Yuan and Yong-Qiang Dai

Department of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou, Hunan 425100, People's Republic of China Correspondence e-mail: ouguangchuan@yahoo.com.cn

Received 27 October 2008; accepted 16 November 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.042; wR factor = 0.126; data-to-parameter ratio = 18.1.

In the title compound, $[Ni(C_7H_5O_2)(C_{16}H_{36}N_4)]ClO_4 \cdot C_7H_6O_2$, the Ni atom displays a distorted octahedral coordination geometry with four N atoms of the ligand *rac*-5,5,7,12,12,14hexamethyl-1,4,8,11-tetraazacyclotetradecane (*L*) in a folded configuration and two benzoate (bz) O atoms. The $[Ni(rac-L)(bz)]^+$ complex cation, perchlorate anion and benzoic acid molecules engage in hydrogen bonding, with N···O distances between 2.970 (3) and 3.123 (3) Å and an O···O distance of 2.691 (3) Å.

Related literature

For related background, see: Tait & Busch (1976); Curtis (1965). For related structures, see: Ou *et al.* (2008); Basiuk *et al.* (2001); Jiang *et al.* (2005).

Experimental

Crystal data [Ni(C₇H₅O₂)(C₁₆H₃₆N₄)]ClO₄--C₇H₆O₂

 $M_r = 685.88$ Monoclinic, $P2_1/c$

a = 8.8035 (11) Å	
b = 18.138 (2) Å	
c = 20.966 (3) Å	
$\beta = 95.512 \ (2)^{\circ}$	
V = 3332.4 (7) Å ³	

Data collection

Bruker SMART CCD area-detector	22312 measured reflections
diffractometer	7304 independent reflections
Absorption correction: multi-scan	5272 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.037$
$T_{\min} = 0.725, T_{\max} = 0.900$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ 404 parameters $wR(F^2) = 0.126$ H-atom parameters constrainedS = 1.11 $\Delta \rho_{max} = 0.58$ e Å $^{-3}$ 7304 reflections $\Delta \rho_{min} = -0.42$ e Å $^{-3}$

Z = 4

Mo $K\alpha$ radiation

 $\mu = 0.72 \text{ mm}^-$

T = 293 (2) K0.48 × 0.26 × 0.15 mm

Table 1Hydrogen-bond geometry (Å, $^{\circ}$).

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
0.91	2.07	2.970 (3)	171
0.91	2.13	3.001 (3)	161
0.82	1.87	2.691 (3)	174
0.91	2.22	3.108 (3)	166
0.91	2.25	3.123 (3)	160
	<i>D</i> —H 0.91 0.91 0.82 0.91 0.91	$\begin{array}{c ccc} D-H & H\cdots A \\ \hline 0.91 & 2.07 \\ 0.91 & 2.13 \\ 0.82 & 1.87 \\ 0.91 & 2.22 \\ 0.91 & 2.25 \\ \hline \end{array}$	$D-H$ $H\cdots A$ $D\cdots A$ 0.91 2.07 2.970 (3) 0.91 2.13 3.001 (3) 0.82 1.87 2.691 (3) 0.91 2.22 3.108 (3) 0.91 2.25 3.123 (3)

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) x + 1, y, z; (iii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the Key Subject Construction Project of Hunan Province (grant No. 2006-180), the Scientific Research Project of the Hunan Provincial Finance Bureau and Education Department (grant No. 08C366), and the Foundation for University Key Teachers of the Education Department of Hunan Province for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2117).

References

Basiuk, E. V., Basiuk, V. A., Hernández-Ortega, S., Martínez-García, M. & Saniger-Blesa, J.-M. (2001). Acta Cryst. C57, 553–555.
Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Curtis, N. F. (1965). J. Chem. Soc. A, pp. 924–931.
Jiang, L., Feng, X. L. & Lu, T. B. (2005). Cryst. Growth Des.. 5, 1469–1475.
Ou, G.-C., Zhang, M. & Yuan, X.-Y. (2008a). Acta Cryst. E64, m1010.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Tait, A. M. & Busch, D. H. (1976). Inorg. Synth. 18, 4–7.

Acta Cryst. (2008). E64, m1588 [doi:10.1107/S1600536808038051]

(Benzoato- $\kappa^2 O, O'$)(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane- $\kappa^4 N, N', N'', N'''$)nickel(II) perchlorate benzoic acid solvate

G.-C. Ou, M. Zhang, X.-Y. Yuan and Y.-Q. Dai

Comment

It is important to control the geometries of ML^{2+} [M = Ni(II), Co(II), Cu(II)] with *cis*- or *trans*-conformation, since they form different structures and show different properties (Tait & Busch, 1976; Curtis, 1965). Continuing our research (Ou *et al.*, 2008), we have synthesized the title compound, (I), which is presented in this paper.

The asymmetric unit of the title compound, (I), contains one $[Ni(rac-L)(bz)]^+$ cation, one $[ClO_4]^-$ anion and one benzoic acid molecule (Fig. 1). The six-coordinated Ni²⁺ of the complex $[Ni(rac-L)(bz)]^+$ cation displays a distorted octahedral geometry by coordination with four nitrogen atoms of the macrocyclic ligand *L* in a folded configuration, and two carboxylate oxygen atoms of benzoic acid in *cis*-position. The Ni—N distances range between 2.082 (2) to 2.134 (2) Å, and are slightly shorter than the Ni—O distance (2.116 (2) and 2.212 (2) Å). The neighbouring cations, anions and benzoic acid are connected to each other through intermolecular hydrogen bond of the types N—H···O and O—H···O (Table 1, Fig. 2). The crystal structures of a few compound closely related to (I) have been reported (Ou *et al.*, 2008*a*,*b*; Basiuk *et al.* 2001; Jiang *et al.*, 2005).

Experimental

Benzoic acid (0.36 g, 3 mmol) and NaOH (0.08 g, 2 mmol) were dissolved in 15 ml of water. To this solution was added $[Ni(rac-L)](ClO_4)_2$ (0.54 g, 1 mmol) dissolved in 2 ml of CH₃CN. The solution was left to stand at room temperature and blue crystals formed after several weeks.

Refinement

H atoms bound to C, O and N atoms were positioned geometrically and refined using the riding model, and with C—H = 0.93, 0.96, 0.97 and 0.98 Å, for aryl, methyl, methylene and methine H-atoms, O—H = 0.82 Å and N—H = 0.91 Å, and with U_{iso} (H) set to $1.5U_{eq}$ (methyl C) and $1.2U_{eq}$ (the rest of the parent atoms).

Figures

Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 30% probability level; H-atoms have been excluded for clarity.

Fig. 2. A view of the packing of the title compound along *a* axis.

$(Benzoato-\kappa^2 O,O')(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-\kappa^4 N,N',N'',N''') nickel(II) perchlorate benzoic acid solvate$

Crystal data	
[Ni(C7H5O2)(C16H36N4)]ClO4·C7H6O2	$F_{000} = 1456$
$M_r = 685.88$	$D_{\rm x} = 1.367 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 8.8035 (11) Å	Cell parameters from 7647 reflections
b = 18.138 (2) Å	$\theta = 2.3 - 26.9^{\circ}$
c = 20.966 (3) Å	$\mu = 0.72 \text{ mm}^{-1}$
$\beta = 95.512 \ (2)^{\circ}$	T = 293 (2) K
$V = 3332.4 (7) \text{ Å}^3$	Prism, light-blue
Z = 4	$0.48 \times 0.26 \times 0.15 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer	7304 independent reflections
Radiation source: fine-focus sealed tube	5272 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.037$
T = 293(2) K	$\theta_{\text{max}} = 27.1^{\circ}$
φ and ω scans	$\theta_{\min} = 1.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 11$
$T_{\min} = 0.725, T_{\max} = 0.900$	$k = -20 \rightarrow 23$
22312 measured reflections	$l = -26 \rightarrow 26$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.042$	H-atom parameters constrained
$wR(F^2) = 0.126$	$w = 1/[\sigma^2(F_0^2) + (0.0643P)^2 + 0.7856P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.11	$(\Delta/\sigma)_{\text{max}} = 0.001$
7304 reflections	$\Delta \rho_{max} = 0.58 \text{ e } \text{\AA}^{-3}$
404 parameters	$\Delta \rho_{min} = -0.42 \text{ e} \text{ Å}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Ni1	0.64844 (4)	0.771339 (17)	0.564296 (14)	0.01920 (11)
C11	0.08075 (7)	0.70176 (4)	0.44238 (3)	0.02611 (16)
N3	0.5075 (2)	0.77519 (11)	0.47565 (9)	0.0208 (5)
H3C	0.4098	0.7716	0.4861	0.025*
N1	0.8063 (2)	0.76085 (12)	0.64759 (9)	0.0219 (5)
H1C	0.7838	0.7983	0.6740	0.026*
01	0.5623 (2)	0.87209 (10)	0.60812 (8)	0.0226 (4)
O2	0.4528 (2)	0.76422 (10)	0.61520 (8)	0.0253 (4)
N4	0.6736 (2)	0.65959 (12)	0.54328 (10)	0.0220 (5)
H4D	0.7638	0.6540	0.5260	0.026*
O6	-0.0503 (3)	0.67518 (13)	0.47084 (12)	0.0527 (6)
05	0.1734 (3)	0.64124 (12)	0.42671 (10)	0.0428 (6)
N2	0.8262 (2)	0.82271 (12)	0.52275 (10)	0.0233 (5)
H2C	0.8728	0.7876	0.5005	0.028*
08	0.1626 (3)	0.74917 (15)	0.48804 (11)	0.0530 (6)
C6	0.5101 (3)	0.84150 (15)	0.43238 (12)	0.0258 (6)
C14	0.8130 (3)	0.69224 (14)	0.68843 (12)	0.0244 (6)
C9	0.5394 (3)	0.70458 (14)	0.44370 (12)	0.0257 (6)
H9A	0.6351	0.7081	0.4245	0.031*
H9B	0.4589	0.6943	0.4100	0.031*
C18	0.3568 (3)	0.86310 (14)	0.67420 (11)	0.0229 (6)
C17	0.4615 (3)	0.83124 (14)	0.62995 (11)	0.0217 (5)
07	0.0320 (4)	0.74181 (15)	0.38604 (11)	0.0672 (8)
C7	0.4224 (3)	0.82719 (17)	0.36663 (12)	0.0326 (7)
H7A	0.4733	0.7894	0.3447	0.049*
H7B	0.4187	0.8717	0.3418	0.049*
H7C	0.3204	0.8115	0.3724	0.049*
C3	0.7870 (3)	0.88481 (15)	0.47783 (12)	0.0278 (6)
H3A	0.7378	0.9235	0.5011	0.033*
C5	0.6758 (3)	0.86021 (15)	0.42156 (12)	0.0268 (6)
H5A	0.7193	0.8170	0.4030	0.032*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H5B	0.6727	0.8989	0.3895	0.032*
C23	0.3032 (4)	0.93478 (16)	0.66577 (14)	0.0359 (7)
H23	0.3329	0.9634	0.6323	0.043*
C15	0.6751 (3)	0.69292 (16)	0.72747 (13)	0.0317 (7)
H15A	0.6786	0.7362	0.7540	0.048*
H15B	0.6770	0.6497	0.7540	0.048*
H15C	0.5830	0.6933	0.6989	0.048*
C10	0.5483 (3)	0.64341 (15)	0.49227 (12)	0.0265 (6)
H10A	0.4521	0.6393	0.5110	0.032*
H10B	0.5679	0.5969	0.4717	0.032*
C1	0.9551 (3)	0.78073 (16)	0.62444 (13)	0.0289 (6)
H1A	0.9963	0.7385	0.6035	0.035*
H1B	1.0269	0.7944	0.6605	0.035*
C2	0.9351 (3)	0.84413 (16)	0.57805 (12)	0.0286 (6)
H2A	0.8965	0.8868	0.5992	0.034*
H2B	1.0327	0.8571	0.5632	0.034*
C13	0.8127 (3)	0.62333 (15)	0.64645 (12)	0.0280 (6)
H13A	0.9016	0.6257	0.6225	0.034*
H13B	0.8261	0.5809	0.6746	0.034*
C8	0.4328 (4)	0.90494 (16)	0.46373 (13)	0.0334 (7)
H8A	0.3276	0.8929	0.4669	0.050*
H8B	0.4390	0.9486	0.4383	0.050*
H8C	0.4830	0.9134	0.5058	0.050*
C19	0.3146 (3)	0.82170 (16)	0.72532 (12)	0.0298 (6)
H19	0.3495	0.7735	0.7311	0.036*
C4	0.9287 (4)	0.91798 (16)	0.45124 (14)	0.0373 (7)
H4A	1.0007	0.9329	0.4861	0.056*
H4B	0.8992	0.9600	0.4251	0.056*
H4C	0.9747	0.8817	0.4258	0.056*
C16	0.9575 (3)	0.69124 (16)	0.73619 (13)	0.0346 (7)
H16A	1.0463	0.6881	0.7131	0.052*
H16B	0.9543	0.6493	0.7640	0.052*
H16C	0.9619	0.7356	0.7613	0.052*
C11	0.6742 (3)	0.60875 (14)	0.59886 (12)	0.0260 (6)
H11	0.5826	0.6189	0.6205	0.031*
C12	0.6712 (4)	0.52789 (16)	0.58023 (15)	0.0436 (8)
H12A	0.5821	0.5181	0.5513	0.065*
H12B	0.6685	0.4981	0.6179	0.065*
H12C	0.7610	0.5163	0.5596	0.065*
C20	0.2205 (3)	0.85191 (18)	0.76787 (13)	0.0365 (7)
H20	0.1938	0.8244	0.8025	0.044*
C22	0.2050 (4)	0.96368 (19)	0.70754 (15)	0.0443 (8)
H22	0.1651	1.0108	0.7008	0.053*
C21	0.1668 (4)	0.92287 (19)	0.75872 (15)	0.0423 (8)
H21	0.1043	0.9432	0.7874	0.051*
03	0.3369 (3)	0.47611 (10)	0.80658 (9)	0.0360 (5)
H3B	0.3730	0.4465	0.8334	0.054*
O4	0.2469 (3)	0.37507 (12)	0.75552 (10)	0.0530(7)
C30	0.2927 (3)	0.55960 (15)	0.69518 (13)	0.0303 (6)
				. ,

H30	0.3393	0.5819	0.7319	0.036*
C29	0.2669 (3)	0.59937 (16)	0.63842 (14)	0.0342 (7)
H29	0.2966	0.6485	0.6370	0.041*
C24	0.2768 (3)	0.44005 (16)	0.75521 (13)	0.0308 (6)
C25	0.2481 (3)	0.48619 (15)	0.69640 (12)	0.0264 (6)
C26	0.1793 (3)	0.45290 (16)	0.64188 (13)	0.0320 (7)
H26	0.1509	0.4036	0.6429	0.038*
C27	0.1524 (4)	0.49276 (18)	0.58565 (13)	0.0362 (7)
H27	0.1046	0.4706	0.5491	0.043*
C28	0.1971 (4)	0.56580 (17)	0.58414 (14)	0.0365 (7)
H28	0.1801	0.5925	0.5463	0.044*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.02147 (19)	0.01929 (18)	0.01704 (16)	-0.00093 (13)	0.00287 (12)	-0.00228 (13)
Cl1	0.0256 (4)	0.0316 (4)	0.0216 (3)	0.0031 (3)	0.0049 (3)	0.0003 (3)
N3	0.0188 (11)	0.0249 (12)	0.0193 (10)	-0.0003 (9)	0.0048 (8)	0.0003 (9)
N1	0.0241 (12)	0.0218 (12)	0.0198 (10)	0.0002 (9)	0.0028 (9)	-0.0028 (9)
01	0.0251 (10)	0.0244 (10)	0.0187 (8)	-0.0022 (8)	0.0044 (7)	-0.0002 (7)
O2	0.0289 (11)	0.0240 (10)	0.0233 (9)	-0.0022 (8)	0.0044 (8)	-0.0030 (8)
N4	0.0210 (12)	0.0240 (12)	0.0214 (10)	-0.0026 (9)	0.0035 (9)	-0.0034 (9)
O6	0.0437 (14)	0.0526 (15)	0.0674 (16)	-0.0160 (11)	0.0336 (12)	-0.0186 (12)
05	0.0486 (14)	0.0445 (13)	0.0372 (11)	0.0199 (11)	0.0146 (10)	0.0008 (10)
N2	0.0251 (12)	0.0221 (12)	0.0231 (11)	-0.0010 (9)	0.0038 (9)	-0.0029 (9)
08	0.0355 (14)	0.0714 (17)	0.0527 (14)	-0.0149 (12)	0.0072 (11)	-0.0293 (12)
C6	0.0291 (15)	0.0268 (15)	0.0212 (12)	-0.0008 (11)	0.0008 (11)	0.0031 (11)
C14	0.0281 (15)	0.0251 (14)	0.0199 (12)	0.0029 (11)	0.0015 (11)	0.0002 (11)
C9	0.0325 (16)	0.0257 (14)	0.0185 (12)	-0.0047 (12)	-0.0003 (11)	-0.0047 (10)
C18	0.0221 (14)	0.0271 (14)	0.0195 (12)	-0.0008 (11)	0.0013 (10)	-0.0017 (10)
C17	0.0244 (14)	0.0240 (14)	0.0157 (11)	0.0014 (11)	-0.0024 (10)	0.0012 (10)
07	0.107 (2)	0.0608 (17)	0.0328 (12)	0.0366 (16)	-0.0002 (14)	0.0145 (12)
C7	0.0348 (17)	0.0392 (17)	0.0230 (13)	-0.0028 (13)	-0.0018 (12)	0.0060 (12)
C3	0.0344 (16)	0.0204 (14)	0.0288 (14)	-0.0024 (12)	0.0044 (12)	-0.0001 (11)
C5	0.0337 (16)	0.0236 (14)	0.0234 (13)	-0.0027 (12)	0.0049 (11)	0.0051 (11)
C23	0.0443 (19)	0.0305 (17)	0.0345 (15)	0.0063 (14)	0.0118 (14)	-0.0006 (13)
C15	0.0438 (18)	0.0303 (16)	0.0222 (13)	0.0037 (13)	0.0090 (12)	0.0011 (12)
C10	0.0269 (15)	0.0271 (15)	0.0247 (13)	-0.0062 (11)	-0.0011 (11)	-0.0037 (11)
C1	0.0210 (14)	0.0395 (17)	0.0258 (13)	-0.0041 (12)	0.0006 (11)	0.0002 (12)
C2	0.0248 (15)	0.0353 (16)	0.0251 (13)	-0.0086 (12)	0.0001 (11)	-0.0050 (12)
C13	0.0324 (16)	0.0252 (15)	0.0261 (13)	0.0028 (12)	0.0016 (11)	-0.0012 (11)
C8	0.0375 (18)	0.0328 (16)	0.0293 (14)	0.0075 (13)	0.0000 (12)	0.0042 (12)
C19	0.0336 (17)	0.0337 (16)	0.0222 (13)	-0.0015 (13)	0.0037 (12)	-0.0006 (12)
C4	0.0380 (18)	0.0305 (17)	0.0433 (17)	-0.0106 (13)	0.0030 (14)	0.0065 (14)
C16	0.0395 (18)	0.0364 (17)	0.0259 (14)	0.0026 (14)	-0.0071 (12)	-0.0011 (12)
C11	0.0326 (16)	0.0211 (14)	0.0246 (13)	-0.0028 (11)	0.0040 (11)	0.0009 (11)
C12	0.069 (2)	0.0228 (16)	0.0367 (16)	-0.0051 (15)	-0.0085 (16)	0.0017 (13)
C20	0.0347 (17)	0.050 (2)	0.0263 (14)	-0.0108 (14)	0.0100 (12)	-0.0080 (13)

C22	0.045 (2)	0.0380 (19)	0.0514 (19)	0.0114 (15)	0.0147 (16)	-0.0105 (15)
C21	0.0358 (18)	0.056 (2)	0.0379 (17)	-0.0041 (16)	0.0158 (14)	-0.0217 (15)
O3	0.0535 (14)	0.0279 (11)	0.0243 (10)	0.0026 (10)	-0.0078 (9)	0.0011 (8)
O4	0.093 (2)	0.0331 (13)	0.0289 (11)	-0.0227 (12)	-0.0128 (12)	0.0130 (9)
C30	0.0327 (16)	0.0280 (15)	0.0297 (14)	-0.0047 (12)	0.0005 (12)	0.0028 (12)
C29	0.0327 (17)	0.0253 (15)	0.0455 (17)	0.0006 (12)	0.0085 (13)	0.0099 (13)
C24	0.0365 (17)	0.0299 (16)	0.0255 (14)	-0.0018 (13)	0.0010 (12)	0.0037 (12)
C25	0.0286 (16)	0.0257 (15)	0.0250 (13)	-0.0016 (11)	0.0028 (11)	0.0038 (11)
C26	0.0370 (18)	0.0307 (16)	0.0283 (14)	-0.0033 (13)	0.0032 (12)	0.0034 (12)
C27	0.0414 (19)	0.0423 (18)	0.0244 (13)	-0.0005 (14)	0.0005 (12)	0.0038 (13)
C28	0.0374 (18)	0.0431 (19)	0.0297 (15)	0.0064 (14)	0.0068 (13)	0.0152 (13)

Geometric parameters (Å, °)

NET NO	2.092(2)	C15 1115C	0.0600
NII—N2	2.082 (2)	CIS—HISC	0.9600
N11—N4	2.091 (2)	C10—H10A	0.9700
Ni1—O2	2.116 (2)	C10—H10B	0.9700
Ni1—N1	2.133 (2)	C1—C2	1.506 (4)
Ni1—N3	2.134 (2)	C1—H1A	0.9700
Ni1—O1	2.212 (2)	C1—H1B	0.9700
Cl1—O7	1.418 (2)	C2—H2A	0.9700
Cl1—O5	1.425 (2)	C2—H2B	0.9700
Cl1—O8	1.429 (2)	C13—C11	1.523 (4)
Cl1—O6	1.433 (2)	C13—H13A	0.9700
N3—C9	1.484 (3)	C13—H13B	0.9700
N3—C6	1.508 (3)	C8—H8A	0.9600
N3—H3C	0.9100	C8—H8B	0.9600
N1—C1	1.485 (3)	C8—H8C	0.9600
N1—C14	1.508 (3)	C19—C20	1.387 (4)
N1—H1C	0.9100	С19—Н19	0.9300
O1—C17	1.274 (3)	C4—H4A	0.9600
O2—C17	1.255 (3)	C4—H4B	0.9600
N4—C11	1.485 (3)	C4—H4C	0.9600
N4—C10	1.490 (3)	C16—H16A	0.9600
N4—H4D	0.9100	C16—H16B	0.9600
N2—C2	1.484 (3)	C16—H16C	0.9600
N2—C3	1.487 (3)	C11—C12	1.517 (4)
N2—H2C	0.9100	C11—H11	0.9800
C6—C8	1.518 (4)	C12—H12A	0.9600
C6—C5	1.536 (4)	C12—H12B	0.9600
C6—C7	1.536 (3)	C12—H12C	0.9600
C14—C13	1.529 (4)	C20—C21	1.378 (5)
C14—C15	1.529 (4)	C20—H20	0.9300
C14—C16	1.541 (4)	C22—C21	1.372 (5)
C9—C10	1.503 (4)	C22—H22	0.9300
С9—Н9А	0.9700	C21—H21	0.9300
С9—Н9В	0.9700	O3—C24	1.326 (3)
C18—C19	1.388 (4)	O3—H3B	0.8200
C18—C23	1.389 (4)	O4—C24	1.208 (3)

C18—C17	1.486 (4)	C30—C25	1.389 (4)
С7—Н7А	0.9600	C30—C29	1.392 (4)
С7—Н7В	0.9600	С30—Н30	0.9300
С7—Н7С	0.9600	C29—C28	1.382 (4)
C3—C5	1.526 (4)	С29—Н29	0.9300
C3—C4	1.537 (4)	C24—C25	1.492 (4)
С3—НЗА	0.9800	C25—C26	1.380 (4)
С5—Н5А	0.9700	C26—C27	1.384 (4)
С5—Н5В	0.9700	C26—H26	0.9300
C23—C22	1.391 (4)	C27—C28	1.383 (4)
С23—Н23	0.9300	C27—H27	0.9300
C15—H15A	0.9600	C28—H28	0.9300
C15—H15B	0.9600		
N2—Ni1—N4	104.28 (8)	C14—C15—H15B	109.5
N2—Ni1—O2	156.80 (8)	H15A—C15—H15B	109.5
N4—Ni1—O2	98.91 (8)	C14—C15—H15C	109.5
N2—Ni1—N1	85.74 (8)	H15A—C15—H15C	109.5
N4—Ni1—N1	90.70 (8)	H15B—C15—H15C	109.5
O2—Ni1—N1	94.56 (8)	N4—C10—C9	109.1 (2)
N2—Ni1—N3	91.05 (8)	N4—C10—H10A	109.9
N4—Ni1—N3	84.99 (8)	C9—C10—H10A	109.9
O2—Ni1—N3	90.46 (8)	N4—C10—H10B	109.9
N1—Ni1—N3	173.84 (8)	С9—С10—Н10В	109.9
N2—Ni1—O1	96.06 (8)	H10A—C10—H10B	108.3
N4—Ni1—O1	159.39 (8)	N1—C1—C2	110.1 (2)
O2—Ni1—O1	60.82 (7)	N1—C1—H1A	109.6
N1—Ni1—O1	87.49 (7)	C2—C1—H1A	109.6
N3—Ni1—O1	98.09 (7)	N1—C1—H1B	109.6
O7—Cl1—O5	109.69 (14)	C2—C1—H1B	109.6
O7—Cl1—O8	110.04 (18)	H1A—C1—H1B	108.1
O5—Cl1—O8	110.78 (15)	N2—C2—C1	109.4 (2)
O7—Cl1—O6	109.14 (18)	N2—C2—H2A	109.8
O5-Cl1-O6	109.81 (14)	C1—C2—H2A	109.8
O8—Cl1—O6	107.34 (14)	N2—C2—H2B	109.8
C9—N3—C6	113.71 (19)	C1—C2—H2B	109.8
C9—N3—Ni1	104.21 (14)	H2A—C2—H2B	108.2
C6—N3—Ni1	120.59 (15)	C11—C13—C14	118.4 (2)
C9—N3—H3C	105.7	C11—C13—H13A	107.7
C6—N3—H3C	105.7	C14—C13—H13A	107.7
Ni1—N3—H3C	105.7	C11—C13—H13B	107.7
C1—N1—C14	113.5 (2)	C14—C13—H13B	107.7
C1—N1—Ni1	103.69 (15)	H13A—C13—H13B	107.1
C14—N1—Ni1	121.68 (15)	С6—С8—Н8А	109.5
C1—N1—H1C	105.6	C6—C8—H8B	109.5
C14—N1—H1C	105.6	H8A—C8—H8B	109.5
Ni1—N1—H1C	105.6	С6—С8—Н8С	109.5
C17—O1—Ni1	86.98 (15)	Н8А—С8—Н8С	109.5
C17—O2—Ni1	91.82 (16)	H8B—C8—H8C	109.5
C11—N4—C10	112.8 (2)	C20—C19—C18	120.2 (3)

C11—N4—Ni1	115.40 (15)	С20—С19—Н19	119.9
C10—N4—Ni1	104.85 (15)	С18—С19—Н19	119.9
C11—N4—H4D	107.8	C3—C4—H4A	109.5
C10—N4—H4D	107.8	C3—C4—H4B	109.5
Ni1—N4—H4D	107.8	H4A—C4—H4B	109.5
C2—N2—C3	112.9 (2)	C3—C4—H4C	109.5
C2—N2—Ni1	104.20 (15)	H4A—C4—H4C	109.5
C3—N2—Ni1	117.77 (16)	H4B—C4—H4C	109.5
C2—N2—H2C	107.1	C14—C16—H16A	109.5
C3—N2—H2C	107.1	C14—C16—H16B	109.5
Ni1—N2—H2C	107.1	H16A—C16—H16B	109.5
N3—C6—C8	108.1 (2)	C14—C16—H16C	109.5
N3—C6—C5	109.5 (2)	H16A—C16—H16C	109.5
C8—C6—C5	111.6 (2)	H16B—C16—H16C	109.5
N3—C6—C7	111.7 (2)	N4—C11—C12	113.5 (2)
C8—C6—C7	108.0 (2)	N4—C11—C13	110.4 (2)
C5—C6—C7	107.9 (2)	C12—C11—C13	109.2 (2)
N1—C14—C13	110.5 (2)	N4—C11—H11	107.8
N1—C14—C15	107.9 (2)	C12—C11—H11	107.8
C13—C14—C15	110.9 (2)	C13—C11—H11	107.8
N1-C14-C16	111.3 (2)	C11—C12—H12A	109.5
C13—C14—C16	108.7 (2)	C11—C12—H12B	109.5
C15—C14—C16	107.5 (2)	H12A—C12—H12B	109.5
N3—C9—C10	109.3 (2)	C11—C12—H12C	109.5
N3—C9—H9A	109.8	H12A—C12—H12C	109.5
С10—С9—Н9А	109.8	H12B—C12—H12C	109.5
N3—C9—H9B	109.8	C21—C20—C19	119.8 (3)
С10—С9—Н9В	109.8	C21—C20—H20	120.1
Н9А—С9—Н9В	108.3	С19—С20—Н20	120.1
C19—C18—C23	119.5 (3)	C21—C22—C23	120.2 (3)
C19—C18—C17	120.0 (2)	C21—C22—H22	119.9
C23—C18—C17	120.5 (2)	С23—С22—Н22	119.9
O2—C17—O1	120.2 (2)	C22—C21—C20	120.4 (3)
O2—C17—C18	120.2 (2)	C22—C21—H21	119.8
O1—C17—C18	119.6 (2)	C20—C21—H21	119.8
С6—С7—Н7А	109.5	C24—O3—H3B	109.5
С6—С7—Н7В	109.5	C25—C30—C29	119.3 (3)
H7A—C7—H7B	109.5	С25—С30—Н30	120.3
С6—С7—Н7С	109.5	С29—С30—Н30	120.3
H7A—C7—H7C	109.5	C28—C29—C30	119.9 (3)
Н7В—С7—Н7С	109.5	С28—С29—Н29	120.0
N2—C3—C5	111.1 (2)	С30—С29—Н29	120.0
N2—C3—C4	112.3 (2)	O4—C24—O3	123.2 (2)
C5—C3—C4	108.5 (2)	O4—C24—C25	122.2 (2)
N2—C3—H3A	108.3	O3—C24—C25	114.7 (2)
С5—С3—НЗА	108.3	C26—C25—C30	120.4 (2)
С4—С3—НЗА	108.3	C26—C25—C24	117.7 (2)
C3—C5—C6	119.9 (2)	C30—C25—C24	121.8 (2)
С3—С5—Н5А	107.3	C25—C26—C27	120.2 (3)

119.9 119.6 (3) 20.2 20.5 (3) 19.7 19.7 -74.8 (2) -2.7 (3)
119.6 (3) 20.2 20.2 20.5 (3) 19.7 -74.8 (2) -2.7 (3)
20.2 20.2 20.5 (3) 19.7 -74.8 (2) -2.7 (3)
20.2 20.5 (3) 19.7 19.7 -74.8 (2) -2.7 (3)
20.5 (3) 19.7 19.7 -74.8 (2) 2.7 (3)
119.7 19.7 -74.8 (2) -2.7 (3)
19.7 -74.8 (2) 12.7 (3)
-74.8 (2) \$2.7 (3)
2.7 (3)
. ,
67.49 (17)
74.9 (2)
1.7 (2)
4.4 (2)
-174.22 (19)
-4.2 (2)
74.4 (2)
36.7 (4)
-144.8 (3)
-141.9 (2)
36.6 (4)
79.6 (2)
-58.8 (3)
57.9 (3)
79.49 (17)
/0.1 (3)
-166.0 (2)
-64.4 (3)
5.3 (3)
73.8 (2)
-1.6 (4)
79.9 (3)
70.4 (2)
4.0 (2)
-60.2 (3)
73.4 (2)
39.4 (2)
73.9 (2)
5.0 (2)
-59.7 (3)
-62.5 (3)
57.1 (3)
75.1 (2)
-0.4 (4)
78.1 (2)
51.8 (3)
72.2 (2)
74.8 (2)

O2—Ni1—N2—C2	73.6 (3)	C14—C13—C11—N4	74.4 (3)
N1—Ni1—N2—C2	-18.00 (16)	C14—C13—C11—C12	-160.1 (2)
N3—Ni1—N2—C2	167.26 (16)	C18—C19—C20—C21	1.1 (4)
O1—Ni1—N2—C2	69.01 (16)	C18—C23—C22—C21	3.1 (5)
N4—Ni1—N2—C3	126.38 (17)	C23—C22—C21—C20	-2.5 (5)
O2—Ni1—N2—C3	-52.3 (3)	C19—C20—C21—C22	0.4 (5)
N1—Ni1—N2—C3	-143.98 (18)	C25—C30—C29—C28	0.2 (4)
N3—Ni1—N2—C3	41.29 (18)	C29—C30—C25—C26	0.2 (4)
O1—Ni1—N2—C3	-56.96 (18)	C29—C30—C25—C24	178.1 (3)
C9—N3—C6—C8	163.9 (2)	O4—C24—C25—C26	2.7 (5)
Ni1—N3—C6—C8	-71.2 (2)	O3—C24—C25—C26	-177.2 (3)
C9—N3—C6—C5	-74.3 (3)	O4—C24—C25—C30	-175.3 (3)
Ni1—N3—C6—C5	50.6 (3)	O3—C24—C25—C30	4.8 (4)
C9—N3—C6—C7	45.2 (3)	C30—C25—C26—C27	-0.8 (4)
Ni1—N3—C6—C7	170.07 (17)	C24—C25—C26—C27	-178.8 (3)
C1-N1-C14-C13	-78.2 (3)	C25—C26—C27—C28	1.0 (5)
Ni1—N1—C14—C13	46.7 (3)	C30—C29—C28—C27	0.0 (5)
C1-N1-C14-C15	160.4 (2)	C26—C27—C28—C29	-0.6 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!$
N1—H1C···O4 ⁱ	0.91	2.07	2.970 (3)	171
N4—H4D···O6 ⁱⁱ	0.91	2.13	3.001 (3)	161
O3—H3B…O1 ⁱⁱⁱ	0.82	1.87	2.691 (3)	174
N3—H3C…O8	0.91	2.22	3.108 (3)	166
N2—H2C····O6 ⁱⁱ	0.91	2.25	3.123 (3)	160

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+3/2; (ii) *x*+1, *y*, *z*; (iii) -*x*+1, *y*-1/2, -*z*+3/2.

Fig. 1

